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Abstract 

The idea of a numerical vector representation ( NVR ) 
of a physical property of a crystal, introduced in a 
previous paper [Fumi & Ripamonti (1980). Acta 
Cryst. A36, 535-551], is a convenient way to account 
for its rotational invariance properties. The main 
advantages of the NVR are the possibility of dealing 
with single invariance relations independently from 
the others and the direct display of the simplest 
features of the invariance relations (vanishing of com- 
ponents, equalities or proportionalities among com- 
ponents, independence of components and 'form 
invariance' with respect to interchange of com- 
ponents). The NVR also provides a direct-expansion 
method of the set of tensor components of a crystal 
property in terms of a minimal subset. A simple rule 
is reported for obtaining a NVR of any given tensorial 
set (i.e. a set of given rank and rotational and permuta- 
tional symmetry) in the axial rotational groups. The 
use of the NVR in establishing general results such 
as isomorphisms between tensorial sets is also illus- 
trated. Finally, a few examples are reported of NVR's 
for high-rank tensorial sets in axial rotational groups 
(specifically the second-order piezoelectric tensor, the 
second-order Pockels elastooptic tensor and the 
fourth-order elastic tensor). 

1. Numerical vector representation (NVR) 

The usual specification of a crystal property is by 
means of a tensorial set, i.e. a set whose components 
transform - under rotation - as products of compo- 
nents of a vector (e.g. Nye, 1985). This specification 
simplifies the algebra of rotational transformations 
that are necessary to relate different experimental 
measurements, but introduces redundancy. In fact, 
the tensorial sets specifying crystal properties are not 
of the most general type since they usually have 
additional rotational symmetry, consisting of a set of 
algebraic relations among their components. This is 
due to the usually higher rotational symmetry of a 
crystal property, which is fixed by the crystal struc- 
ture, with respect to the intrinsic or natural rotational 
symmetry of a tensorial set, which is a rapidly decreas- 
ing function of rank. 

To 'minimize' the tensorial specification of a crystal 

property one needs to expand the crystal property in 
terms of a minimal subset: i.e. each component of 
the tensorial set must be expanded into a sum, with 
proper coefficients, of the components of a minimal 
subset. This is the fundamental mathematical problem 
in the usual tensorial specification of a crystal 
property (e.g. Nye, 1985). 

The expansion oftensorial sets with rotational sym- 
metry of order 1, 2 or 4 is almost trivial as it reduces 
to equalities (except for sign) of pairs of components 
and (or) vanishing of components (Fumi, 1952). The 
expansion is, instead, a laborious algebraic task for 
high ranks in the other cases, specifically those of 
order 3, 6 and oo.* 

The NVR of a tensorial set specifying a crystal 
property (Fumi & Ripamonti, 1980a) (referred to 
below as I) is a one-to-one correspondence between 
this set and a set of numerical vectors (in a vector 
space of proper dimension) which preserves the rota- 
tional invariance of the tensorial set, i.e. all the alge- 
braic relations of invariance among components. The 
NVR thus provides an account of the rotational 
invariance of a tensorial set without the usual recourse 
to an explicit form of invariance relations. In fact, 
the NVR accounts for rotational invariance by provid- 
ing algebraic conditions for the numerical coefficients 
in an arbitrary invariance relation, in the form of a 
vector equation for the coefficients themselves. 

The NVR directly displays the simplest features of 
the invariance relations - vanishing of components, 
equalities or proportionalities among components, 
independence of components and 'form invariance' 
with respect to interchange of components - and 
provides a means of directly checking the consistency 
with rotational invariance of an arbitrary relation 
among components. It also provides a means for 
direct determination of an invariance relation among 
any set of components: in particular, a method for 
direct determination of the expansion of a component 
in terms of a (minimal) subset of components. 

The direct-expansion method provided by the NVR 
has several advantages over the existing methods: 

* Group 6(6[l z) can be simply treated as a superposition of group 
3(311z) and a symmetry axis 2(211z) (see e.g. Fumi & Ripamonti, 
1980b) (referred to below as II). Group oo(ooll z) can also be treated 
as a superposition of groups 4(4[[z) and 3(3 IIz) for tensors of ranks 
up to (but excluding) 12 (see II, Appendix B). 
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(i) it deals with individual expansion relations 
(independently from the others); 

(ii) it exploits any reduction in the number of 
independent expansion coefficients. 

In particular, the direct-expansion method avoids 
both steps of the existing methods:* 

(a) the determination of a complete set of invari- 
ance relations; 

(b) the transformation of this set (by algebraic 
means) into the desired 'expansion' form. 

To find a numerical vector representation of a 
tensorial set specifying a crystal property one can 
exploit (see I) the contravar ian t  transformational 
properties of a component and its numerical 
coefficient in any invariant linear combination of 
tensor components. Indeed these numerical 
coefficients do transform under rotation as the com- 
ponents (by contravariance) and do have the desired 
invariance under the rotational group of the crystal 
since they enter invar iant  linear combinations. Thus 
any complete set of independent tensorial invariants 
provides a (complete) numerical vector representa- 
tion of the tensorial components of a crystal property. 

Consider the subset n~ = 0,t ny even of a tensorial 
set of rank 4 with no permutational symmetry, 
invariant under the rotational symmetry group 
oo (oollz). This subset consists of the following eight 
components: x x x x ,  yyyy ,  ( x xyy ) .~¶  

To find a NVR of the given subset one needs first 
a minimal set of invariant linear combinations of its 
components: for example (see §§ 2, 3),** 

+ 
I + + _ _  = 

+ 
I+__t__ 

x x x x  - x x y y  + x y x y  + y x x y  + x y y x  

+ y x y x  - y y x x  + y y y y  

x x x x  + x x y y  - x y x y  + y x x y  + x y y x  

- y x y x  + y y x x  + y y y y  

x x x x  + x x y y  + x y x y  - y x x y  - x y y x  

+ y x y x  + y y x x  + yyyy.  

One then obtains a NVR by simply associating each 
component with its three numerical coefficients in the 
three invariants (following an arbitrary but fixed 

* The existing methods differ essentially in the first step, of which 
there are basically three types: 

(1) impose rotational invariance to individual components (com- 
plete but redundant set); 

(2) impose that a (minimal) set of non-invariant linear combina- 
tions of components be equal to zero; 

(3) expand the individual components into invariant linear com- 
binations of components. 

t n~, n r, nz are the partial ranks in the x, y, z indices. 
For simplicity we denote the components by their indices. 

¶ A round bracket stands for all the permutations of the enclosed 
indices. 

** In Fumi & Ripamonti (1980a, b, 1984) we adopted a ditterent 
(perhaps less transparent) notation for the tensor invariants. 

order) as follows: 

NVR x x x x  x x y y  x y x y  y x x y  xyyx  y x y x  y y x x  yyyy  
÷ 

I++__ 1 - 1  1 1 1 1 - 1  1 
+ 

I÷_+_ 1 1 - 1  1 1 - 1  1 1 

I+_++_ 1 1 1 - 1  - 1  1 1 1 

Inspection of the NVR reveals, first of all, the 
equality of components related by x~--~y exchange. 

Further inspection permits one to find a minimal 
subset of components to be used as expansion basis. 
Since the NVR is three-dimensional, a minimal subset 
consists of any three components having (linearly) 
independent representative numerical vectors. Thus, 
for example, the three components ( x x y ) y  (i.e. xxyy ,  
xyxy ,  y x x y )  are independent as their representative 
vectors are clearly independent. 

The NVR also provides almost immediately the 
expansion of the component x x x x  in the ( x x y ) y  
expansion basis: 

x x x x  = C l x x y y  + C 2 x y x y  + C3yxxy.  

To determine the expansion coefficients one uses the 
NVR: replacing the components by their numerical 
vectors, one obtains a vector equation for the 
expansion coefficients C1, (?2, (?3. However, by noting 
that the chosen expansion basis is closed under per- 
mutations of the first three indices, while the com- 
ponent x x x x  is invariant under these permutations, 
one sees that there are constraints on the form of the 
expansion. Indeed, this expansion must be 'form 
invariant' under these permutations, i.e. one must 
have C1 = C2 = C 3  ~- C: 

x x x x  = C ( x x y y  + x y x y  + y x x y )  [1] ([_1] 1] 1] 
1 = C  1 + - 1  + 1 = C  1 . 

1 1 1 - 1  1 

Through the NVR one thus obtains C = 1. It should 
also be noted that whenever there is a reduction in 
the number of independent expansion coefficients 
(here from three to one) it is sufficient to use a 
correspondingly reduced NVR. Here one could have 
simply used a one-dimensional NVR, e.g. the NVR 
given by the coefficients in the first invariant: 

x x x x  = C ( x x y y  + x y x y  + y x x y )  

$ ,L ,L 
1 = C ( - 1  + 1 + 1 ). 

2. A simple rule for obtaining a NVR in axial rotational 
groups (z [] symmetry axis) 

It is obviously important to have a simple rule to 
obtain a NVR of any given tensorial set (i.e. a set 
of given rank and rotational and permutational 
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symmetry). This is possible for axial rotational 
symmetries. 

Since a minimal set of invariants (i.e. their numeri- 
cal coefficients) provides a NVR, one needs actually 
a rule to obtain a minimal set of invariants. In general 
one has to recur to invariant projections of tensorial 
components of the given rank, but this procedure 
does not guarantee the independence of the generated 
invariants. Alternatively, invariant products (e.g. 
scalar products) of lower-rank irreducible variants 
(i.e. irreducible linear combinations of tensorial com- 
ponents of lower rank) can be used to avoid the use 
of projections, but independence is not ensured 
anyway. 

The task is very simple, however, for axial rota- 
tional symmetries. There a minimal set of invariants 
is given by a special tensorial subset of Hermann's 
components of a vector* identified by the condition 
(see I) 

n+= n_ mod N, (1) 

where n+, n_ are the partial ranks in the + ,  - indices 
and N is the order of the symmetry axis. For a 
cylindrical axis n+ = n_. 

Owing to the tensorial nature of this set of 
invariants it is also possible to obtain the NVR 
through formulas (thus avoiding explicit expansion 
of the invariants in terms of the usual tensorial com- 
ponents). In fact the numerical coefficients of a 
(usual) tensorial component k in the pertinent 
invariants are given by simple products (or sums of 
products). Specifically, 

(i) for general tensorial sets (i. e. sets with no permu- 
tational symmetry) (see I), 

~k=iny(k)(--1) nU'k), (2) 

where j is a Hermann invariant, ny(k) is the y partial 
rank of k and n(j, k) is the number of ( - ,  y) index 
correspondences between j and k; 

(ii) for tensorial sets with permutational symmetry 

r(Zj)k = Z rjk, (2') 
J 

where Y, j is an invariant with the given permutational 
symmetry, constructed in general by summation of 
permutationally related Hermann invariants. 

3. Use of the NVR in establishing isomorphisms 
for general tensorial sets 

Symmetrizing Hermann's invariants with respect to 
+ ~ -  exchange, one splits them into two indepen- 
dent subsets 

I + = ½(I + i ) ,  I -  = ½(I - I) ,  (3) 

* The  H e r m a n n  c o m p o n e n t s  o f  a vec tor  are given by  v+ = vx + ivy, 
v_ = vx - ivy, Vo = vz, where  v,,  vy, Vz are the usual  o r thogona l  com-  
ponen t s  o f  a vector .  

where -~ denotes + ~ -  exchange. Since + o -  
exchange implies y o - y  exchange, it follows that 
components having even y rank (ny even) have zero 
coefficients in the I -  invariants, while components 
having odd y rank (ny odd) have zero coefficients in 
the I ÷ invariants. Thus, components having different 
ny parities are independent as their representative 
vectors are independent. 

Furthermore, since (see I, Appendix)' 

~-~=frj÷k if (nx+ny) is odd (4) 

[where f is a constant depending only on (nx+ ny), 
denotes x , + y  exchange and j+, j -  are symmetrized 

Hermann invariants constructed from a given 
invariant j] ,  it follows that subsets of odd (nx + n r) 
rank, having different ny parities, have a common 
NVR (besides being independent). Alternatively, the 
NVR is invariant with respect to x o y  exchange 
(except for an irrelevant factor f) .  Accordingly, it is 
sufficient to deal with only one of these subsets. 

This result can be extended to even (nx+ ny) rank 
by limiting x o y  exchange to an odd number of 
indices, say (nx+ ny)-  1, and by taking into account 
the effect of the fixed index: since (see I, Appendix) 

rj-~¢ = + fi)+k (5) 

[where - denotes x ~ y exchange on (nx + n r - 1) 
indices, and the minus sign holds if the fixed index 
is y], it follows that the NVR is invariant with respect 
to the x ~ y  exchange in (nx+ny-1 )  indices when 
accompanied by a change of sign if the fixed (i.e. 
unexchanged) index is y. 

In conclusion, general tensorial subsets of different 
ny parities, besides being independent, are formally 
identical (i.e. they have the same formal algebraic 
structure). The correspondence that preserves such a 
formal structure is the x+-~y exchange over all the 
indices for (nx + ny) odd and over all indices but one 
(plus a sign change if the fixed index is y) for even 
(nx + ny). 

Another important result for even (nx+ ny) which 
follows from the NVR (see I, Appendix) is that for 
ny even the coefficients of pairs of general tensorial 
components totally exchanged in x and y are equal 
when taken from Hermann invariants for which n+ = 
n_ mod 4, and opposite otherwise: for ny odd the 
opposite is true. 

The NVR is a powerful tool for establishing general 
results such as isomorphisms between tensorial sets 
(including sets with permutational symmetry). 

4. Examples of NVR's 

(a) Rank 5 
Rotational symmetry group: 3(3 ]] z) 
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Permutational symmetry group: i[[jk][lm]];* 
second-order piezoelectric tensor 

Tensorial subset: nz = 0, n r even. 
This subset consists of the following six com- 

ponents:? 111, 112, 122, 166, 216, 226. 
A minimal set of invariants is given by the five 

invariants (see §§2, 3) I(+++++). Of these I+++++ has 
the desired permutational symmetry and another one 
can be constructed by summing the other four: 

4 

I+t-+++l-  5-'- + - I+~_+++),. (6) 
i = 1  

Thus a NVR of the given permutational symmetry is 
two-dimensional. By using (2) for the coefficients in 
the individual Hermann invariants and by summing 
over the four Hermann invariants in (6), one obtains 
the following NVR:¢ 

NVR 111 112 122 166 216 226 
+ I_+++÷ 1 -1  1 -1  1 -1  

I$t-÷÷+1 4 0 - 4  0 -2  - 2  

Permutational symmetry group: 
[ mn ][pq]];* fourth-order elastic tensor 

(i) Tensorial subset: nz = O, ny odd. 
NVR 1116 1126 1226 1666 

[[ ij][ kl]- 

2226 2666 
• - !  - 

l I[+++++++_1 6 - 2  - 2  - 2  6 - 2  

The representatives of 12i6, 2226 and 2666 follow 
directly from the representatives of 1126, 1116 and 
1666 owing to the last two paragraphs of § 3. 

(ii) Tensorial subset: nz = 1, ny even.t~t , 

NVR 1115112512251146124615662225224625664666 

I[~++l[++]t--l]+z 3 -3  3 -1 1 1 -3  -1  -1  -3  

It~++~t++lt+-11-= 6 - 2  - 2  4 . 0 ' 2  6 - 4  - 2  0 
I[~++lt+_l[+_]+ z 12 4 - 4  - 4  - 4  0 -12 - 4  0 0 

The reported NVR's give expansions that agree 
with those reported in the literature by Nelson (1979) 
for case (a), Vedam and Srinivasan (1967) for case 
(b)§ and Brendel (1979) and Markenskoff (1979) for 
cases (c) (i) and (ii). 

( b ) Rank 6 
Rotational symmetry group: m(ooilz) 
Permutational symmetry group: [ij][[kl][mn]]; 

second-order Pockels elastooptic tensor 
Tensorial subset: nz = 0, n r even. 

NVR 111 112 122 166 211 212 222 266 616 626 

I~--tt++]t--n 2 - 2  2 2 2 - 2  2 2 0 0 
I++-tt+-lt÷-11 4 4 4 0 4 4 4 0 0 0 
I+++t+---] 4 0 - 4  0 - 4  0 4 0 2 2 

The representative vectors of 122, 212, 222, 266 and 
626 follow directly from the representative vectors of 
211, 112, 111, 166 and 616 owing to the last two 
paragraphs of § 3. 

(c) Rank 8 
Rotational symmetry group: 3(3 II z) 

* A square bracket stands for symmetry with respect to 
permutations of the enclosed indices. 

t The abbreviated standard notation is: i = x(--- 1 ), y(=2),  z(=3); 
[jk] or [lm] = xx[ -1) ,  yy(=- 2), xy(-6) .  

Pairs of components related by 1 ~ 2 exchange in the last two 
indices have vectors with identical corresponding entries (except 
for sign). Accordingly a convenient expansion basis is one that is 
closed under such an exchange (e.g. 111 and 122) and then the 
resulting expansion relations are 'form invariant' under the 
exchange. 
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* The abl~reviated standard notation is: [/j] or [ kl], [ mn ], [pq ] = 
xx (= 1), yy (=2), yz (-=4), zx ( -5 ) ,  xy (=6). 

-The tensorial invariants with the index z in different positions 
are independent. 

$ Pairs of components related by 1 ~-~ 2 exchange have vectors 
with identical corresponding entries (except for sign). A convenient 
expansion basis is thus one closed under such an exchange (e.g. 
1115, 2225, 1246) and then the resulting expansion relations are 
'form invariant' under the exchange. 

.~ In fact the pertinent expansions for isotropy 0(3) reported by 
these AA follow by symmetrization with respect to x, y, z of the 
expansions for oo(oollz) (see I1. Appendix B). 


